

interior angles

Classify triangles and find measures of their angles.

A TRIANGLE WITH VERTICES A, B, AND C IS CALLED "**TRIANGLE ABC**" OR " $\triangle ABC$."

B

С

CLASSIFYING TRIANGLES BY SIDES

• A <u>SCALENE TRIANGLE</u> IS A TRIANGLE WITH NO CONGRUENT SIDES.

• AN **ISOSCELES TRIANGLE** IS A TRIANGLE WITH **AT LEAST TWO** CONGRUENT SIDES.

• AN **EQUILATERAL TRIANGLE** IS A TRIANGLE WITH **THREE** CONGRUENT SIDES.

Classifying Triangles by Angles

- An <u>acute triangle</u> is a triangle with three acute angles.
- A <u>right triangle</u> is a triangle with one right angle, and two acute angles.
- An <u>obtuse triangle</u> is a triangle with one obtuse angle, and two acute angles.
- An <u>equiangular triangle</u> is a triangle with three congruent angles.

CLASSIFICATION BY SIDES

Classify $\triangle ABC$ by its sides. Then determine if the triangle is a right triangle. The vertices are A(0,0), B(3,3) and C(-3,3).

<u>Step 1</u>: Plot the points

in the coordinate plane.

• AB =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(3 - 0)^2 + (3 - 0)^2} = \sqrt{9 + 9} = \sqrt{18} \approx 4.2$$

• AC = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-3 - 0)^2 + (3 - 0)^2} = \sqrt{9 + 9} = \sqrt{18} \approx 4.2$

• BC =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(-3 - 3)^2 + (3 - 3)^2} = \sqrt{36 + 0} = \sqrt{36} = 6$$

• SLOPE:
$$AC = \frac{(3-0)}{(-3-0)} = \frac{3}{-3} = -1$$
 $AB: \frac{(3-0)}{(3-0)} = \frac{3}{3} = 1$

- AC \perp AB $\rightarrow \angle CAB$ IS A RIGHT ANGLE
- $AB = AC \rightarrow \triangle ABC$ is isosceles
 - L RIGHT ISOSCELES TRIANGLE

TRIANGLE SUM THEOREM

THE SUM OF THE MEASURES OF THE INTERIOR ANGLES OF A TRIANGLE IS 180°.

m<1 + m<2 + m<3 = 180°

Property of triangles

THE SUM OF ALL THE ANGLES EQUALS 180° DEGREES.

YOU TRY: WHAT IS THE MISSING ANGLE?

0

X

70° 70° - X 180°

 $180 - 140 = 40^{\circ}$

 $20x = 20(2) = 40^{\circ}$ $25x = 25(2) = 50^{\circ}$

 The measure of an exterior angle of a triangle is equal to the sum of the measure of the two nonadjacent interior angles

The *acute* angles of a right triangle are *complementary*.

$m \angle A + m \angle B = 90^{\circ}$

Find the missing angles.

SOLUTION:

2x + x = 90 3x = 90 $x = 30^{\circ}$ $2x = 2(30) = 60^{\circ}$

Find the missing angles.

You Try

$$2x + (x - 6) = 90^{\circ}$$

 $3x - 6 = 90^{\circ}$
 $3x = 96^{\circ}$
 $x = 32^{\circ}$

 $2x = 2(32) = 64^{\circ}$

 $(x-6) = 32 - 6 = 26^{\circ}$