Chapter 4.2: Apply Congruence and Triangles

YOU WILL IDENTIFY CONGRUENT FIGURES, PARTS, AND WRITE CONGRUENCE STATEMENTS.

Two geometric figures are *congruent* if they have exactly the same size and shape.

Congruence Statements

In two <u>congruent figures</u>, all the parts of one figure are congruent to the <u>corresponding parts</u> of the other figure.

In congruent polygons, this means that the *corresponding sides* and the *corresponding angles are congruent*.

Identifying congruent figures

Two geometric figures are congruent if they have exactly the same size and shape.

Congruent Parts in Triangles

С

Ρ

<u>Congruence Statement: $\triangle ABC \cong \triangle PQR$ </u>

You Try

Ex.1: Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts.

Corresponding Sides:

Corresponding Angles:

Congruence Statement:

 $\bigtriangleup XYZ \cong \bigtriangleup NMP$

Ex.2: In the diagram, ABCD \cong FGHK

- a. Find the value of x.
- b. Find the value of y.

You Try

Ex.3: In the diagram below, <u>ABGH \cong CDEF</u>

a. Identify all pairs of congruent corresponding parts.

b. Find the value of x and find m \angle H.

Congruent AnglesCongruent Sides4x + 5 = 1054x = 1004x = 100x = 25 $m \angle H = 105^{\circ}$

Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

Ex. 3 Using the Third Angles Theorem

Find the value of x.

Writing a Proof:

Given: $SV \cong RV$, $TV \cong WV$, $ST \cong RW$. $\angle W \cong \angle T$

Prove: $\triangle STV \cong \triangle RWV$

Theorem 4.4 Properties of Congruent Triangles:

- <u>Reflexive Property of Congruent Triangles:</u>
- For any triangle ABC, $\triangle ABC \cong \triangle ABC$
- Symmetric Property of Congruent Triangles: If $\triangle ABC \cong \triangle DEF$, then $\triangle DEF \cong \triangle ABC$

• <u>Transitive Property of Congruent Triangles</u>: If $\triangle ABC \cong \triangle DEF$ and $\triangle DEF \cong \triangle JKL$, then $\triangle ABC \cong \triangle JKL$

