Chapter 4.2:
 Apply Congruence and Triangles

YOU WILL IDENTIFY CONGRUENT FIGURES, PARTS, AND WRITE CONGRUENCE STATEMENTS.

Two geometric figures are congruent if they have exactly the same size and shape.

Congruence Statements

In two congruent figures, all the parts of one figure are congruent to the corresponding parts of the other figure.

In congruent polygons, this means that the corresponding sides and the corresponding angles are congruent.

Identifying congruent figures

Two geometric figures are congruent if they have exactly the same size and shape.

NOT CONGRUENT
CONGRUENT

Congruent Parts in Triangles

Congruence Statement: $\triangle A B C \cong \triangle P Q R$

You Try

Ex.1: Write a congruence statement for the triangles. Identify all pairs of congruent corresponding parts.

Corresponding Angles:

Corresponding Sides:

Congruence Statement:

$$
\triangle X Y Z \cong \triangle N M P
$$

Ex.2: In the diagram, $\mathrm{ABCD} \cong \mathrm{FGHK}$

a. Find the value of x.
b. Find the value of y.

You Try
Ex.3: In the diagram below, $\mathrm{ABGH} \cong \mathrm{CDEF}$

a. Identify all pairs of congruent corresponding parts.
b. Find the value of x and find $m \angle H$.

$$
4 x+5=105
$$

Congruent Angles Congruent Sides

$$
\begin{aligned}
& 4 x=100 \\
& x=25
\end{aligned}
$$

$$
\mathrm{m} \angle \mathrm{H}=\mathbf{1 0 5}^{\circ}
$$

Third Angles Theorem

If two angles of one triangle are congruent to two angles of another triangle, then the third angles are also congruent.

If angle A and angle D are congruent and angle B and angle E are congruent, then angle C and angle F are congruent as well.

Ex. 3 Using the Third Angles Theorem

Find the value of x.
$\angle \mathrm{N} \cong \angle \mathrm{R}$ and $\angle \mathrm{L} \cong \angle \mathrm{S}$

$\angle \mathrm{M} \cong \angle \mathrm{T}$. So $\mathrm{m} \angle \mathrm{M}=\mathrm{m} \angle \mathrm{T}$
From the Triangle Sum
Theorem....

$$
\begin{aligned}
& \mathrm{m} \angle \mathrm{M}=180^{\circ}-55^{\circ}-65^{\circ}=60^{\circ} \\
& \mathrm{m} \angle \mathrm{M}=\mathrm{m} \angle \mathrm{~T} \\
& 60^{\circ}=(2 \mathrm{x}+30)^{\circ} \\
& 30=2 x \\
& 15=x
\end{aligned}
$$

Writing a Proof:
Given: $\mathrm{SV} \cong \mathrm{RV}, \mathrm{TV} \cong \mathrm{WV}, \mathrm{ST} \cong \mathrm{RW} . \angle \mathrm{W} \cong \angle \mathrm{T}$
Prove: $\triangle S T V \cong \triangle R W V$

Theorem 4.4 Properties of Congruent Triangles:

- Reflexive Property of Congruent Triangles:
- For any triangle $\mathrm{ABC}, \triangle \mathrm{ABC} \cong \triangle \mathrm{ABC}$
- Symmetric Property of Congruent Triangles: If $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$, then $\triangle \mathrm{DEF} \cong \triangle \mathrm{ABC}$
- Transitive Property of Congruent Triangles:

If $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ and $\triangle \mathrm{DEF} \cong \triangle \mathrm{JKL}$, then $\triangle \mathrm{ABC} \cong \Delta \mathrm{JKL}$

