5.5 Parallel and
 Perpendicular lines

REVIEW Find the slope between points $(-1,-1)$ and $(2,3)$

$$
\begin{aligned}
& \frac{y_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{\mathbf{3 - - 1}}{\mathbf{2 - - 1}} \\
& \begin{array}{l}
\text { The slope } \\
\text { is } 4 / 3
\end{array} \\
& \begin{array}{l}
\text { Up 4, right } 3
\end{array} \\
&
\end{aligned}
$$

Graph $y=2 x-3$

$$
\mathbf{y}=\mathbf{m x}+\mathbf{b}
$$

$$
b=-3
$$

Graph $y=2 x-3$

$$
b=-3 \quad m=2
$$

Begin at $b=-3$
Move up 2 units and then right 1 unit
(2)

Draw a line through the

How can you tell if equations are parallel?

or perpendicular?

Use your graphing function

 On your laptop$$
\begin{aligned}
& \text { Use } \mathrm{Y}= \\
& \text { Enter } \mathrm{y}_{1}=2 \mathrm{x}+1 \\
& y_{2}=2 x-3
\end{aligned}
$$

Now graph.
Why are the lines parallel?

Use graphing function

Enter $\mathrm{Y}_{1}=2 \mathrm{X}+4$

$$
Y_{2}=-(1 / 2) X
$$

Slopes are negative reciprocals.

$$
\begin{aligned}
& Y_{1}=2 X+4 \\
& Y_{2}=-(1 / 2) X
\end{aligned}
$$

Lines are perpendicular.

\square	-		1	\square	T	
-						
	7			\checkmark		

Parallel lines have same slope.

$y=.2 x+9$
$y=.2 x-3$

Perpendicular lines

have slopes that are negative reciprocals.

$$
\begin{array}{llll}
\frac{3}{4} & -\frac{4}{3} & -6 & \frac{1}{6}
\end{array}
$$

$$
\begin{gathered}
x=5 \\
x=1
\end{gathered}
$$

Same slope
m is
undefined.

Find the equation of a line

 perpendicular to $x=3$

